Y. Takéuchi and Y. Takano, whose contributions are appreciated.

References

DANA, E.S. (1904). A System of Mineralogy, 6th ed. New York: Wiley.

GOSSNER, B. & MUSSGNUG, F. (1930). Zbl. Min. Geol. Paläont. A, p. 220.

ITO, T. (1950). X-ray Studies on Polymorphism. Tokyo: Maruzen.

PALACHE, C. (1931). Amer. Min. 16, 469.

Acta Cryst. (1952). 5, 213

The Crystal Structure of Ti₃Au and Ti₃Pt

By POL DUWEZ* AND CHARLES B. JORDAN[†]

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

(Received 13 August 1951 and in revised form 10 October 1951)

Powder patterns indicate that Ti_3Au and Ti_3Pt crystallize in the A15 (β -wolfram) structure with lattice parameters of 5.036 and 5.033 Å, respectively.

An exploratory X-ray investigation of the titaniumgold and titanium-platinum systems revealed the presence of intermediate phases in the vicinity of the compositions Ti_3Au and Ti_3Pt . The crystal structures of these new phases were worked out from powder patterns and are described in the present note.

The alloys were prepared by rolling suitable amounts of the constituent metals into thin flat strips, which were then wrapped together and arc melted in an atmosphere of high-purity helium by a technique which has been described elsewhere (Schramm, Gordon & Kaufmann, 1950). The gold and platinum were 'commercially pure' grade (i.e. at least 99.9% pure) and the titanium (prepared by the iodide decomposition process) contained less than 0.05% total impurities by the vendor's analysis.

After arc melting, the Ti_3Au specimen was sealed in an evacuated silica tube and heated for 75 hr. at 1500° F. The Ti_3Pt specimen was not given any further heat treatment. Both specimens were crushed, and portions of the resulting powders which passed through a 200 mesh screen were used to obtain X-ray diffraction patterns with a camera of 14.32 cm. diameter and copper $K\alpha_1$ radiation.

The powder patterns thus obtained were easily indexed as those of simple cubic lattices having parameters of 5.096 Å for the Ti₃Au and 5.033 Å for the Ti₃Pt. These values of the parameters were computed by applying Cohen's (1935) least-squares method to the last ten back-reflection lines of each pattern. The possibility that the structure of these compounds (which the powder patterns showed at once to be isomorphous) is the A15 or β -wolfram structure was suggested by the AB_3 atomic ratio, by the positions of the constituent metals in the periodic table, and by the fact that reflections of the type (hhl) with odd *l* are missing, as required by the space group O_h^3 of the A15 structure. Accordingly, relative intensities were computed by the formula

$$I \propto p |F|^2 rac{1 + \cos^2 2 heta}{\sin^2 heta \, \cos heta}$$
 ,

where p is the planar multiplicity factor, F is the structure factor, and the angular factor represents the

Table	1.	Diffraction	data f	for	Ti ₃ Au	
		<i>JJ</i>			0	

	Io			
hkl	Film	Spectrometer	Ic	
110	w	630	764	
200	\boldsymbol{w}	520	424	
210	vw	250	192	
211	m	1000	1000	
220	vw	150	118	
310	w	200	165	
222			8	
320	vw	60	36	
321	ms	640	475	
400	w	150	87	
411, 330	\boldsymbol{w}	140	97	
420	mw	170	137	
421	vvw		8	
332	mw		123	
422	vw		47	
510, 431	mw		136	
520, 432	vw	—	39	
521	m		215	
440	mw		103	
530, 433	mw	—	104	
600, 442	m		168	
610	vvw		17	
611, 532	8	—	460	
620	vw		84	
541	m		258	

s=strong; ms=medium strong; m=medium; mw=medium
weak; w=weak; vw=very weak; vvw=very very weak.

^{*} Associate Professor of Mechanical Engineering and Chief of the Materials Section.

[†] Research Engineer.

Table 2. Diffraction data for Ti₂Pt

	Io			
hkl	Film	Spectrometer	Ic	
110	w	550	749	
200	w	470	424	
210	vw	250	199	
211	ms	1000	1000	
220	vw	130	116	
310	w	190	165	
222			7	
320	vw	70	36	
321	ms	590	474	
400	vw	100	89	
411, 330	w	150	96	
420	w	150	138	
421	vvw	_	8	
332	w		123	
422	vw		46	
510, 431	mw		132	
520, 432	vw		40	
521	ms	_	217	
440	mw		104	
530, 433	mw		102	
600, 442	m		169	
610	vvrw		17	
611, 532	8		464	
620	vw	_	83	
541	m	-	258	

s=strong; ms=medium strong; m=medium; mw=medium
weak; w=weak; vw=very weak; vvw=very very weak.

combined Lorentz and polarization factors. Table 1 lists the relative intensities. The agreement is satisfactory except for the reflections of low Bragg angles. It was felt that this discrepancy was due to the large absorption of the gold and platinum atoms. In order to check this hypothesis, a pattern of each substance was taken on a Norelco spectrometer. Since in this apparatus all lines of the pattern are obtained by Bragg-type reflection rather than by Laue-type, effects due to absorption in the low-angle reflections should be considerably less than in the case of a pattern obtained photographically. The relative intensities (above local backgrounds) measured on the Norelco charts are given in Table 1, and it can be seen that those of the lowest-angle reflections are indeed in much better agreement with the calculated values than are those read from the films.

The structures proposed on the basis of these results are accordingly as follows:

Space group O_{h}^{3} -Pm3n; 8 atoms per unit cell. $a_{0} = 5.096$ Å for Ti₃Au; = 5.033 Å for Ti₃Pt. 2 Au (or Pt) atoms in (a): 0, 0, 0; $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. 6 Ti atoms in (d): $\frac{1}{4}, \frac{1}{2}, 0; 0, \frac{1}{4}, \frac{1}{2}; \frac{1}{2}, 0, \frac{1}{4}; \frac{3}{4}, \frac{1}{2}, 0;$ 0, $\frac{3}{4}, \frac{1}{2}; \frac{1}{2}, 0, \frac{3}{4}$.

In Ti₃Au, each gold atom is surrounded by twelve titanium atoms at a distance of 2.84 Å; each titanium atom is surrounded by two titanium atoms at 2.54 Å, four gold atoms at 2.84 Å, and eight titanium atoms at 3.11 Å. In Ti₃Pt, each platinum atom is surrounded by twelve titanium atoms at 2.81 Å; each titanium atom is surrounded by two titanium atoms at 2.51 Å, four platinum atoms at 2.81 Å, and eight titanium atoms at 3.07 Å.

As a result of a literature survey, it appears that the following intermetallic phases also crystallize in the β -wolfram structure: Cr₃Si (Boren, 1933), V₃Si (Wallbaum, 1939), Cr₃Ge and V₃Ge (Wallbaum, 1944), Mo₃Si (Templeton & Dauben, 1950), and V₃Co (Duwez, 1951). The fact that Mo₃Zr also has the β wolfram structure has been reported by Wallbaum (1942). An X-ray investigation of the molybdenumzirconium system in this laboratory indicates that the only intermediate phase in this system is centered around Mo₂Zr and that its structure is not that of β -wolfram.

This work was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract number DA-04-495-ORD-18 with the Army Ordnance Department, Washington, D.C. The authors wish to thank this agency for permission to publish the results of this investigation.

References

BOREN, B. (1933). Ark. Kemi. Min. Geol. 11 A, No. 10.

- COHEN, M. U. (1935). Rev. Sci. Instrum. 6, 68.
- DUWEZ, P. (1951). Trans. Amer. Inst. Min. (Metall.) Engrs. 191, 564.
- SCHRAMM, C. H., GORDON, P. & KAUFMANN, A. R. (1950). Trans. Amer. Inst. Min. (Metall.) Engrs. 188, 195.
- TEMPLETON, D. H. & DAUBEN, C. H. (1950). Acta Cryst. 3, 261.
- WALLBAUM, H. J. (1939). Z. Metallk. 31, 362.
- WALLBAUM, H. J. (1942). Naturwissenschaften, 30, 149.
- WALLBAUM, H. J. (1944). Naturwissenschaften, 32, 76.